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STEADY STATE FLUID MODELS OF THE ION-EXOSPHERE

Abstract

An ion-exosphere can be defined as the uppermost part of the ionosphere
in which the self-collision time is much larger than the time required for ions
to travel between mirroring points. In such a case the system is entirely
controlled by the externally applied forces and the long-range Coulomb forces.
If we assume that among these forces the Lorentz force is dominant and that
the heat transport is negligible, a closed system of hydromagnetic equations
can be derived by taking successive moments of the Vlasov equation. This
system of equations is often referred to as the CGL theory or the double adia-
batic theory. In this theory the two equations of state are equivalent to the
requirement that the magnetic moment and the longitudinal invariant be adia-
batic invariants.

The present investigation is concerned with the magnetohydrostatic solu-
tion of the CGL equations. The dilute plasma is assumed to be in a gravita-
tional field, permeated by a strong dipole magnetic field and rotating with
constant angular velocity about the dipole axis. These equations are solved
in the dipole coordinate system by assuming that the ion-exosphere is either
in adiabatic equilibrium or in isothermal equilibrium. Analytic expressions
for the density, the elements of the pressure tensor, and the temperature of
the fluid have been derived. A formula for the ring current has also been

found. The results are illustrated by a number of representative curves.



STEADY STATE FLUID MODELS OF THE ION-EXOSPHERE

I. Introduction

The motion of charged particles in the Earth's magnetic field can be ana-
lyzed into three distinct cyclic motions. The first of these is the circular
gyrating motion of a charged particle about a moving point called its guiding
center. The period of gyration, sometimes known as the Larmor period, is
approximately 1.5 micro-seconds for electrons and 2.8 milli-seconds for protons
on the Earth's surface at the equator and increases as the third power of the
radial distance from the center of the Earth. The second of the cyclic motions
is the oscillatory motion of the particles along lines of force between their
conjugate mirroring points. In this case, the guiding center of a particle
oscillates with a period which depends on the energy of the particle, on the
pitch angle of the particle in the equatorial plane, and on the particular
line of force. For high-energy particles in the radiation belts, with energy
10 kev or higher, the period is a few seconds for electrons and about 100
seconds for protons (Van Allen, 1962; Akasofu and Chapman, 1961); for thermal
particles the period approaches ten minutes for electrons and five hours for
ions. Due to inhomogeneity of the field and the centrifugal force associated
with motion along curved lines of force, the guiding center also drifts in
longitude, electrons to the east and protons to the west. The time required
in this third cyclic motion to drift once completely around the Earth is
slightly more than three days for 10 kev electrons and ions and more than 100
years for thermal particles (Lew, 1961).

In general, plasmas can be classified as high density, medium density, or




low density, (Alfvén and Félthammar, 1963). This classification depends
largely on the magnitude of the self-collision time (Spitzer, 1956) as com-
pared with the characteristic periods of the cyclic motions discussed in the
preceding paragraph. When the self-collision time is shorter than the Larmor
period, the velocity distribution is nearly isotropic and, hence, so are the
transport coefficients, The effect of the magnetic field is felt only through
the Lorentz force term J X'g/c which, for example, renders the propagation of
hydromagnetic waves anisotropic. When the self-collision time exceeds the
Larmor period but is less than the mirroring period, all transport coeffi-
cients become highly anisotropic since now the transverse motion is restricted
by the small Larmor radius while particles can move relatively freely in the
longitudinal direction over a much larger distance. When the self-collision
time is greater than the mirroring period, collisional effects can be ignored
altogether. This condition may be expected to be satisfied for energetic
particles in the Earth's environment above an altitude of some 1000 km, where
the particles are predominantly electrons and protouns.
as the ion-exosphere, (Eviator, et al., 1964). In this region the particles
move only under the action of the applied field and the self-consistent field,
and the transport coefficients in the ordinary sense may be meaningless. If
such a plasma has existed over a period longer than the time required for a
complete drift around the Earth, the plasma may then be said to have reached
a steady state. It is in this context that the present theory is developed.
There is considerable interest at present in developing a theory for the
protonosphere surrounding the Earth, (Dungey, 1955; Gliddon, 1963; Allen, et

al., 1964; Angerami and Thomas, 1964). Of course the physical protonosphere



is very complex due to the presence of chemical reactions and dynamical motions
of internal and external origins. In order to make the problem manageable,
simplifying assumptions such as that of thermodynamic equilibrium and high
density (so that pressure is isotropic and obeys the ideal gas law) have been
made. The present low-density assumption represents the other extreme. The
theory may be expected to apply to high energy particles and probably to the
thermal particles in the protonosphere just beyond the discontinuity in elec-
tron density, known as the ''knee', (Carpenter, 1963), which is believed to
exist at a geocentric distance of some six Earth radii.

The paper is written according to the following brief outline.

Relevant equations are given in II and the problem is stated mathemati-
cally in III. In order to solve these equations two models have been consider-
ed. In the first model, the ion-exosphere is supposed to be in convective
equilibrium. This may come about, for example, because of turbulence. It
is further supposed that the mirroring period is so short that no appreciable
conduction of heat can take place during one complete oscillation between con-
jugate mirroring points. As a result there is a tendency for adiabatic equili-
brium to be set up. The solution of the adiabatic model and related discussions
on ring current and instabilities are given in IV. 1In the second model the
ion-exosphere is supposed to have existed so long that all temperature differ-
ences have been equalized and the ion-exosphere is then in isothermal equili-
brium. This is discussed in V. It is interesting to remember that analogous
situations exist in connection with the study of neutral atmospheric models
(Mitra, 1952). As a matter of fact, even some of the theoretical difficulties

are of the same nature. Using formulas derived in IV and V, numerical values




have been computed and the results are presented in VI. For each model, sample
curves are shown for model protonosphere and model radiation belt. Finally

the results of this investigation are discussed in VII,



II. The Single-Fluid Hydromagnetic Equations

We make use of the system of equations applicable to a dilute plasma
permeated by a relatively strong magnetic field, (Chew, et al., 1956). 1In
this theory collisions are ignored and the Lorentz force is assumed to be
dominant in the Boltzmann equation. The procedure therefore is to assume
that the velocity distribution function can be expanded in a series of as-
cending powers of m/e, where m is the mass and e the charge of an ion. It
follows immediately that the first approximation to the distribution function
must be axially symmetric in velocity space about a line parallel to the

magnetic field B and hence the pressure tensor takes the form

P=P I+ (P =~} (1

oo 4

where I is the unit dyadic and_R is a unit vector parallel to B.
In terms of the mass density, p, mass velocity u, charge density q and
current density J, the first and second moments of the Boltzmann equation

yield, respectively, the equation of continuity

g% +div o w) = 0, (2)

and the equation of momentum transfer

du. .
Pt = -d1v§—pgrad¢+q£+

O

(J_QE)XE; (3)

POV

where ¢ is the potential due to body force. Mixed Gaussian units are used
here.

An equation of state can be found by taking the third moment of the




Boltzmann equation, but this introduces a new tensor representing heat trans-
port. The system of equations can be clcsed if it is assumed that heat trans-
port can be ignored. In this case the third moment-equation provides two

adiabatic relations

2
1 @, %) =0 (4)
and
d =0
at (P_L /pB) = B (5)

We shall assume that these relations are a sufficiently good approxim:-
tion for use in our model. Equation (5) is evidently the analogue of the
adiabatic invariant magnetic moment of a single charged particle. It can be
shown that equation (4) when combined with equation (5) is equivalent to the
condition of longitudinal invariant (Thomson, 1962). Since this paper solves
only for the steady state solution, it implies that all three adiabatic invari-
ants must hold.

To the first approximation, the CGL theory requires the electric fiehilz

to satisfy the condition appropriate to a fluid of infinite conductivity,
1
E + E uxB=0. (6)

The electromagnetic variables also satisfy Maxwell's equations which, for

our case, are

(7)

curl Q

]
o

(8)

curl B

l
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div E = d47q , (9)
divB = 0. (10)

The problem we consider is that of a plasma rotating steadily with angular
velocity w about the axis of a magnetic dipole. The plasma is acted upon by

a gravitational force directed towards the dipole, Now a rotational velocity-
field automatically satisfies equation (2). Also, the electric field is
determined by equation (6) and equation (7) restricts w to a constant value

on any one line of force (Ferraro, 1937). Equation (9) then implies the
presence of a charge distribution q, which dimensional arguments (Dungey, 1958)
show, is extremely small in the infinite conductivity approximation. The terms
involving q in equation (3) can thus be neglected. The problem therefore
reduces to the determination of the unknows [} ;i and‘ghfrom equations (3},

(4), and (5). The remaining equations (6) and (8), which have not so far been
referred to, serve to determine the perturbation magnetic field due to the

current density J.
S



III. Statement of the Problem

A dipole of moment MO is situated at the origin of a fixed coordinate
system with its axis directed along the z-axis. Plasma is assumed to be ro-
tating steadily with angular velocity w (constant along any given line of
force) about the axis of the dipole. At distances two to five Earth radii,
the rotational force is small and therefore the equations will be given in
the non-rotating coordinate system. The coordinates of any point in the
plasma may be referred to (see figure in Appendix A) by the spherical polar

2

1 3
coordinates (r, ©, ¢) or by the dipole coordinates (x, x , x ), details of

which are given in the Appendix. The equation of motion,

du 1 .
P 3% = —dlvwvl\z\ﬁ—pgrad&‘i>+-cf%{><vl~3“‘g (1)

1 2 3 ..
has the following components parallel respectively to the x, x , x dipole

coordinate lines:

oF 91n h_h
il
— + (P - P) 23 +ph [EM sin 1 - wz r sin®cos ®- I1)] =0, (12)
o 1 I L 1 1t 2 :
gx ax r
ap P - P 9lnh
2
J. = - E[l—- ! + 4 1 + psM cos I - w pr sin © sin(® - 1)), ((13)
3 B'h 2 h 2 2
2 Ox 2 0x r
a - 0
e 1 PP, P 1n hl .
=3 73w 51 =0 av
3 O 3 ox

In the above equations ¢ has been replaced by -GM/r where G is the gravi-

tational constant and M is the mass of the Earth. We see from equation (12)



that there is need of relations relating p and EL to P Since we are only

1 °
seeking steady-state solutions and the fluid is assumed to have only rota-
tional motion, equations (4) and (5) indicate that P"Bz/ps and QL/pB are
independent of x3 but may be arbitrary functions of x1 and x2° Therefore,
it seems that the description of the problem is still incomplete, unless
additional conditions are imposed. Actually the situation is analogous to
the study of a neutral atmosphere (Mitra, 1952)., Following this analogy, we
consider an adiabatic and an isothermal model. For the adiabatic model, it
is sufficient to assume that the quantities P“Bz/'p3 and EL/pB are constant

along a line of force.

Therefore, the end conditions we use, for the adiabatic model, are

P = Py (15)

and

at the point (ro, 90) on the line of force where it leaves the ion-exosphere
and enters the region where collisions become sufficiently frequent to secure
isotropy of pressure. This region extends over a height range of the order
of a scale height which is small when compared with the length of the field
iine.. Therefore, such a becundary condition may not be too unreasonable to
use. Actually isotropy of pressure is not a limitation in the present theory,
but only an assumption which simplifies the final formulas. The quantities
with suffix zero are assumed to be known. The adiabatic relations, expressed

in terms of the end conditions, are
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2 3 2 3 )
P“B /p = POBO/pO = c” 5 (16a)
and
RL/pB = Po/pOB0 = ¢ (16b)

where <, and c, are known constants for any given line of force.
For the isothermal ion-exosphere equations (16a) and (16b) must be re-

placed by the assumption of equal temperatures
= = 7
Py /P P yo’Po K (172)

and

P/p = P /Py = K, (17b)

where again K"and.gtare known constants for any given line of force.
The use of either equations (16) or (17) will make equation (12) an
ordinary first order differential equation, expressing the variation of P

along a line of force. The cquation is then solved for each model in IV and

V, subject to the respective end conditions.
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IV. Adiabatic Equilibrium

In an adiabatic ion-exosphere, equations (16a) and (16b) are valid. When

they are substituted into equation (12) P” can be solved.

IV.1 Solution of the Equation of Motion along a Line of Force

Consider a line of force whose equation is

2
R =Lsin" & , (18)

where R = r/rO and roL is the geocentric distance of the point where the line

of force cuts the equatorial plane. The number L is known as the IL~shell
number, but normalized by a geocentric radius to the base of the ion-exosphere.

Using (16) and (17) to eliminate P, and p, we may express equation (12) in

4
the form
dp 1/3
i 241~ 15R (241~ 15R) (41-3R) 1/3 1/3
=+ P 4+ [-k —~— 4+ k_ ————— - k_(4L~3R) 1p =0
1 2 4 h
dRr 2R(41~-3R) I 1 R6(4L—3R) /6 R 3
(19)
where
5/3 1/3.5/6 5
k1 =C M0 /2c L ro 5
2/3,1/3.1/3 3
k2 = GMM0 /c L ro s
and
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2
k = 3M /3 wz/ 2c 1/3L4/3

3 0 I (20)

Equation (19), which is of the Bernoulli type, can be integrated without
difficulty. The solution of the problem can then be conveniently expressed

by the formulas

P, /P, = /B 1Y%, (21)
p /e, = /B aM2 (22)
p/py = (B/By) Al/z ’ (23)
where . wzp r2
and
H, = PO/(ZGMpOrBZ) (25)

is the scale height of the plasma at the end-point of the line of force (dis-
tance r0 from the center of the Earth).
Temperature has not so far been defined for the fluid model. We may

define a temperature 6 by means of the equation

3 1
Snée = 35 (P, + 2P ) , (26)
which yields the expression
Doto
w

2] 1 1 00 3
zZ == = - — (R~ - . 27
o, = [5 + 4B/B) + (r /H)) (G = 1) P L ( 1] (27)
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On the other hand, it may be meaningful to define separate temperatures 9”

and OL , corresponding respectively to %’ and g_; thus if

3 1 3
Sne, =35, 5108 =P , (28)

<]
2B
0 0 0

IV.2 The Ring Current

In order to support the fluid hydrostatically currents must flow in the
ion-exosphere. Due to symmetry of the problem the current along the equipo-
tential coordinate line vanishes as shown by equation (14). The azimuthal
current in the form of a filamentary ring current is given by equation (13).
This current can be re-expressed by using the metric coefficients given in the
Appendix but the resulting expression is too complex to be of value., It we

assume that the end conditions be uniform over the globe, the current density

in the equatorial plane can be shown to be

2
J, = © e { 2 +Eg[§+ ro(l-n +wpf0(mf- 1)]
= — Gt —2°
3 r By | 40-3 " By 'L " HjL 2L POLz
r zpr
241~ 0 “Fo’o 2
- 21 (— L-15 5 - 5 + —3p— (2L + /L )]} , (30)
%g 31’ (4-3/L) 3H,L 0

where the subscript E is used to denote the quantity referred to the equatorial

plane.
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Several numerical examples of interest are given in Section VI.

IV.3 Distribution of Plasma Density along the Dipole Axis

Formulas (21)-(23) take a simpler form when we consider variations along

the polar line of force. The density ratio, for example, becomes

Pp 13 Yo Yo 2 ]1/2 1)
Py g3 3 3H, BHR 3

&
o
w
=<}

<

where pp stands for plasma density on the polar line., It should be mentiornzc
that there are complications in the case of the polar line, Because of infi-
nite length of the line of force, collisional effects, as well as the possi-
bility of escape, must be taken into account. In addition, consideration of
the expression inside the square bracket of (31) shows that HO must exceed
r0/5 if the density and pressure are to remain positive everywhere on the
polar line. An alternative statement of this condition is that at the base

of the ion-exosphere the total thermal energy of electrons and ions must
exceed three-fifths of the ion gravitational energy in order for the pressures
and the density to remain positive. Since the CGL theory assumes that the
Lorentz force is dominant the gravitational force should not be too large

for the theory to remain valid.

Taking ro =7 X 108 cm, we find that if

o]
TiO + TeO > 2800 K

at the base of the exosphere, the density and pressure will remain positive

everywhere.
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It is worth noting that similar difficulties also appear in the adiabatic
neutral atmosphere (Mitra, 1952). There the neutral scale height HO must
exceed (y-l)yo/y in order for the density to remain positive even at infinity.
The quantity y is the ratio of specific heats. The usual explanation is that
the highly idealized adiabatic model may be expected to apply only in the
troposphere or below, where the theory predicts a correct behaviour when

ground values are used as end conditions.

IV.4 The Adiabatic Ion-Exosphere and the Theory of Whistler Propagation

The study of plasma density (or pressure) in the equatorial plane as a
function of the conditions existing at the base of the ion-exosphere can be
simplified by carrying out approximations to the quantity A appearing in
equations (21)-(23). The second term in eguation (24) becomes negligible
when R > 2, at least as a first approximation. Again, the last term in
equation (24) which reprezents the effect of the rigid body rotation; is

negligible for values of kR such that 2 < R < L < 3. Thus we can write

r

o LB a-bit acnsicn, @
Po 9 0
where
B 1 41, - 3R . 1/2
B, - B3 @-s) 33

The density distribution pE on the equatorial plane is obtained by writing

R =1L,
Pg 1 L e s T 1..1/2
el 2o 2 a-mY2?, e<r<u<s . (34)
P, "3 AL -3 3 3, L
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We can now consider the effect on Pg when Pg and HO vary with latitude.
If po is an increasing function of L (po increasing in the direction from
equator to pole) it is obvious from equation (34) that pE will decrease more
slowly than it would if po had a constant value. Again, if HO (or equiva-
lently, the temperature) at the reference level is an increasing function of
L, the value of the expression in square brackets in equation (34) also
increases and hence, in this case also, Pg decreases more slowly with alti-
tude. Observation of whistlers has led to the suggestion that the plasma
density in the equatorial plane may decrease rather abruptly between three
and four Earth radii. According to the fluid model, such a decrease would be
consistent with an increase in plasma temperature or a decrease in plasma
density (or both) at the base of the ion-exosphere between approximate geo-
magnetic latitudes 55° and 600°

A simple relationship p oc B (along a given line of force) has been
suggested (Storey, 1953; and Smith, 1961) as being consistent with whistler
theory. The time delay T for a cne-way travel of a whistler signal along a

line of force can be calculated from the well-known formula

T o= —— [ 22 (1-%—)'3/2 ds (35)
H H

where f is the frequency of the signal, fp is the plasma frequency, fH is the
gyrofrequency for electrons, c is the velocity of light and ds is the element
of arc of the line of force. Figure 1 shows the time-delay curves calculated
for various lines of force, assuming in equation (35) that the electron densi-

ty is directly proportional to B along each line of force and that the number

4
density at the base of the ion-exosphere is 2 X 10 /cc. The curves are
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certainly qualitatively consistent with observed time-delay curves. In parti-
cular, the curve for L = 5 reproduces the phenomenon of a minimum time delay
known as the nose whistler. It appears that no justification has been
advanced in support of the law p & B and some authors consider it cannot be
justified. Dungey (1962) claims that the approximation is implausible. His
argument is based on a particular case of a more general pitch-angle distri-
bution function derived by Parker (1957). The adiabatic fluid model certainly
suggests that p oc B may be a rough approximation, as shown in Section VI.1,
even though the CGL theory may apply more appropriately to belts of high-

energy particles rather than to background particles.

IV.5 Instability Associated with Anisotropic Pressure

We have given the adiabatic solution of the problem in (21)-(23). The
next question to ask is whether the given solution is stable to small pertur-
bations. While the complete answer to this question is unavailable, it is of
interest to examine whether instability may arise due to anisotropic pressure.
Such instability may arise as follows: if the magnetic field is adiabatically
distorted so that the curvature is increased locally, the particles following
the lines of force with velocity corresponding to temperature 6“ will experi-
ence an increased centrifugal force, If the sum of the magnetic pressure and
the perpendicular particle pressure is not large enough to balance the centri-
fugal force, the perturbation will grow. By obvious analogy, this instability

¥

is usually referred to as the "garden-hose" instability. The condition for
this type of instability to occur in a homogeneous collisionless plasma is,

(Parker, 1958)
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2,
P“ > RL + B /41 . (36)

Along a given line of force this inequality would be satisfied first at points
in the equatorial plane. It will be sufficient for our purposes, therefore,
to determine where (36) is satisfied in the eguatorial plane. Using the sub-

script E to denote the equatorial quantities, (36) can be rewritten as

(P“E = I”J_E)/P0

] 2
(BE/BO)

o (37)

Bi/(4ﬂ P.) <

o

This equation indicates that the plasma is unstable if the ratio of the mag-
netic pressure to the particle pressure at the base of the ion-exosphere is
less than the ratio of the normalized difference in equatorial particle

pressures to the normalized equatorial magnetic pressure. The formula (37)

*
enables us to determine the critical number-density n, at the base of the

*
ion-exosphere such that if n, > n, the garden-hose instability will occur.

The critical number-density so defined is given by

2
* Bo/ a7

n = (38)

] 1/3 3 1/2 .
kTOAE [L AE(4-3/L) - 1)

where AE is the equatorial value of A given by equation (24).

Two cases are considered and the results are shown in Figure 2. 1In the
first case, the average of electron and ion temperature TO at the base of the
ion-exosphere is assumed to be 1500°K, correspending to thermal particles.

In the second case, a temperature appropriate for particles of 10 kev energy

is used. This case may be considered to represent a belt of high-energy par-

ticles. 1Instability occurs at any L value if the number-density n, at the
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%
of the ion-exosphere exceeds the value of nO indicated on the graphs. For

the thermal case, it can be seen that if n_ is 105 or less the ion-exosphere

0]
is stable against the garden-hose instability. If n, is 106y instability
appears for L Z 24, For the high-energy belt case, instability can occur,
for example, at L = 6 if n, exceeds 103°

The kind of instability considered here has received detailed treatment
by Noerdlinger (1963) who shows (again for uniform plasma) that the wave-
number of the fastest growing waves is of the order of 0.1 c.op/c° At a dis-
tance of three Earth radii this gives a wave-number of about 10_5 cm_l,
corresponding to a wavelength of 6 X 105 cm, This is very small when compared
with an Earth radius of 6 X 108 cm, a distance over which most quantities vary

significantly. It seems permissible therefore to use the instability crite-

rion, developed for uniform plasma, as a rough guide in the present discussion.
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V. Isothermal Equilibrium

In an isothermal atmosphere equations (17a) and (17b) are valid. When
they are substituted into equation (12) the following differential equation

is obtained.

2 2
P, (3L - SR) ) _ AL (GMrO 3R y1p 2 o0 (39)
aR " '2R(4L - 3R) K, " Ky p2 L oo

Equation (39) can be integrated easily to yield, along the line of force,

2 2

P P 1-P, /P r W p,T
L B L0 "o 0 00

no  “10 Po 0 H, 0

The scale height HO is by definition

2
Hy, = P ro/Mp, = 686, /m, , (41)

which differs from that defined earlier in equation (25).
For the special case PLO = PHO = P0 and negligible rotational effect,

equation (40) reduces to

P/P, = plp, = explr,(1/R - 1)/H] , (42)

0

an expression which can be derived by using the usual fluid collision domi-
nated model with a scalar pressure. The result of equation (24) shows that
even in the collisionless case the pressure for an isothermal ion-exosphere
is a scalar everywhere along a field line if it is so at the end of the line.
Now sine P“ = PL = P everywhere along the line of force, equation (36) can

never be satisfied and hence there is no garden-hose instability. If the

pressure at the end of the field line is allowed to be anisotropic,
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instability will arise only if P“OI> RLO'

It is interesting to note that an equation identical in form with equa-
tion (42) applies to the isothermal neutral atmosphere (Mitra, 1952). The
only differences are in the definition of scale height and in the fact that
equation (42) applies along the magnetic lines of force while in the neutral
atmosphere it applies along a radial line. As in the case of the neutral

atmosphere, equations (40) and (41) give positive values of P and p even when

R approaches infinity along the polar line,
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VI. Numerical Results

The theory developed in this paper will be used to study two models:
(1) model protonosphere and (2) model radiation belt. 1In the first case we
have the background thermal particles in mind, while in the second case we
study the effect of a hypothetical belt of high-energy particles such as
that considered by Akasofu and Chapman (1961). The theory applies more
appropriately to high-energy particles than to thermal particles. In view
of the present lack of a valid theory, the first model study is presented
only for comparison purposes.

The following numerical values apply to both models:

- 2 -2 - -
G =6.7 X 10 8 dyne cm g w=7.27 X 10 5 rad sec 1
27 25 .
M=6 X 10 g(mass of Earth) M0 = 8.19 X 10 gauss cm. (dipole moment)
-24 8 -
m=1.7 X 10 g(mass of proton) r0 =7 X 10 cm (= 1.1 Earth radii)
-16 -1 ,
k =1.4 X 10 erg deg (Boltzmann's constant). (43)

For purposes of computation we assume that the base of the ion-exosphere is
at a height of approximately one tenth of an Earth radius. For the adiabatic
model it is convenient to assume that at the base of the ion-exosphere col-
lisions are sufficiently numerous to render the distribution function
isotropic. This assumption is relaxed in the isothermal model in order to
allow the study of effects caused by anisotropic pressure at the base. Other
numerical values appropriate to each model will be given in the following sub-

sections,

VI.1l Model Protonosphere
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In addition to the numerical values given in (43) we shall assume the sum
of electron and ion temperatures at the base of the ion~exosphere to be 3000°K
over the whole globe., These data suffice to compute the ratios P"/PO’ P¢/P0,
p/po, and 9/90 along any line of force for an adiabatic model.

In Figure 3 the variation of each ratio as a function of R is displayed
for various lines of force (that is, for various values of L). Also shown
on Figures 3a and 3b, for comparison, are the graph of B/B0 and curves of
number-density ratios (N/NO) computed (by a completely different method) by
Eviator, et al. (1964). It will be noted that the plasma density along a
line of force is quite closely proportional to the magnetic field strength
B and this property was used in Section IV.4 to compute whistler time-delay.
It is also interesting to note that the present theory predicts a plasma
density consistently greater than the corresponding densities computed from
the Eviator, et al. (1964) model.

Plots similar to those in Figure 3 have also been made for an isothermal
protonosphere. These are shown in Figures 4a, 4b, and 4c for L = 1.5, 3 and
6 respectively. 1In each case the possibility that the pressure may be aniso-
tropic at the base of ion-exosphere is also considered by allowing b = P_LO/P”0
to take values 0.8, 1.0 and 1,2. It is interesting to note that for b > 1,
the curves may have a minimum. This comes about because (B/Bo)l‘b increases
with R while the exponential factor in equation (40) decreases with R. 1In
addition to the numerical values given in (43) we have also assumed that
T”0 = 5OOOK, P”O = 8.28 X 10_-9 g/cm—sec2 so that the scale height Hé comes
out to be 3.06 X 108 cm.

Comparison of Figure 3 with Figure 4 shows that in general the pressure
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and density in an adiabatic model decreases faster than in the corresponding
isothermal model.

The variation of proton density-ratio with latitude at fixed heights in
an adiabatic model is plotted in Figure 5. These curves show that if the ion
density and temperature at the base of the ion-exosphere are constant (inde-
pendent of latitude) then the ion density at fixed heights increases from a
minimum at the equator to a maximum at the poles. The same latitude-dependence
is to be seen in the similar graphs drawn by Eviator, EE El: (1964) and is
attributable to the anisotropy introduced by the geomagnetic field.

In order to compute the current density we further assume the number-
density at the base of the ion-exosphere to be 2 X 104 electrons/cc. The
results are shown in Figures 6 and 7. Figure 6 shows the current density in
the equatorial plane and it is seen that the current decreases monotonically
as L increases. The current density along a few sample L~shells is shown in
Figure 7. We see that the current density along the line of force reaches a
minimum between the base of the ion~exosphere and the egquator. It is inter-
esting to note that these filamentary ring currents flow in the positive
x3—axis (westward) direction and hence display the diamagnetic effect. The
Earth's main magnetic field is weakened slightly as a result. The curves
shown in Figures 6 and 7 are computed only for the adiabatic model. Similar

curves can be computed for the isothermal model without difficulty.

VI.2 Model Radiation Belt

In case the particles have energies of order kev or higher the formulas

(24) and (40) can be simplified since the gravity effect and the rotation
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effect may be ignored. For the adiabatic model we obtain from equation (24)
A = (B~ ZB/BO)/B . (44)

When equation (44) is substituted into (21), (22), (23) and (29) the pressure
ratio, density ratio and temperature ratio can be computed. Note that these
ratios now depend only on the magretic field. Sample curves showing the
variation of pressure, density and temperature are depicted in Figure 8 for
magnetic lines of force L. = 1.5, 3 and 6. It will be noted that 9" increases
with R. This is the reverse of the behavior of 9" observed in the model pro-
tonosphere. The difference is due to the fact that gravity is unimportant in
the radiation belt model.

Similar simplification also applies to the isothermal radiaticn belt,

Equation (40) reduces simply to

1-p /P
/R, = @By 00 (45)

R no

Equation (45) shows that in an isothermal radiation belt pressure and density
are uniform everywhere along the line of force if the pressure is isotropic
at the end of the field line. In case the pressure is not isotropic at the
end, the variation of pressure and density along the lines of force corres-
ponding to L = 1.5, 3, and 6 has been computed and is shown in Figure 9. By
comparing Figure 8 with Figure 9 the differences between the adiabatic and
isothermal models can be easily observed.

As a last example we consider the hypothetical belt inferred by observa-
tions of auroral phenomenon. Here, instead of values at the base of ion-

exosphere we shall assume the values at the equator are known. Following



26

Akasofu and Chapman, the equatcrial number density is assumed to have a

gaussian form,

2 2
n, = exp[-g (L - LO)] (46)

The centgr of the belt is at LO = 6 and the value of g is 1.517. Since the
energies of these particles are very high the simplified form indicated by
equation (44) is used. The computations have been made for the adiabatic
model and the results are illustrated in Figure 10 as contour plots. Figure
10a shows constant P" curves in polar coordinates. The belt nature is obvious.
A similar plot for Pl is shown in Figure 10b. Comparison of Figure 10a and
Figure 10b indicates again that RL decreases along the line of force more

rapidly than does PI The mass density contours are shown in Figure 10c

|
and the current density contours are shown in Figure 10d.
The current density is computed directly from equation (13). Because of

the presence of transverse gradient of Pu term and the gaussian nature of the

densrmin el mvrean . N -
tward current flows for R less than about 3 as shown in Figure 10d.

p

For R larger than about 3, P“ has decreased sufficiently so that the curvature

term would dominate and as a result the current flows westward.
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VII. Discussion

We have presented magnetohydrostatic solutions of the CGL theory in a
dipole coordinate system. Analogous to neutral atmospheric theory both adia-
batic and isothermal models have been considered. The CGL equations used
completely ignore effects of collisions. For the adiabatic model, this is
equivalent to requiring validity of all three adiabatic invariants. For the
isothermal model, the solution reduces to the case obtained for the collision
dominated plasma.,

The actual behavior of the magnetosphere is probably somewhere between
the adiabatic model and the isothermal model considered in this paper. If
the temperature along the line of force is measured or inferred from other
theoretical considerations so that K" and KL are known, equation (39) can be

integrated to obtain a more realistic model,
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Appendix A

The scalar potential V for a dipole of moment MO’ situated at the origin

O with its axis directed along the z-axis is given by
2
vV = (MO cos 8)/r (AA.1)

The magnetic induction B = |grad V| and the "angle of dip" I between the

direction of the magnetic field and the horizontal and hence given respectively

by
M 2 1/2
B = 3 (L + 3 cos 8) (AA. 2)
r
and
tan I = 2 cot €6 . (AA.3)

2
Dipole coordinates (xl, X, x3) are defined by the line of force, the equi-
potential curve and the circle of latitude through any given point. The

coordinate lines are given by

2
line of force, r = x sin2 e ,
. . . 2 1
equipotential line, r = X cos 8 , (AA.4)
3
circle of latitude, ¢ = -x

The squared element of arc in the dipole coordinate system is given by
2 1.2 2.2 3.2
ds = (hldx ) o+ (h2dx Yo o+ (h3dx )

where the metric coefficients have the values




. 29
6
2 cos4 o 2 sin € 2 2 2
h = 5 5 s h2 = —————2— ) h, = r sin 6
r (L + 3 cos 8) 1 + 3 cos O
(AA.5)

If P is the tensor defined by equation (1), the physical components of div P

<o~

in the curvilinear coordinate system are

oP
. 1 I d
(div P) = — [—= (P - P) — (ln h h )] (AA.6)
=71 h1 9yt h ! 273
(di ) - 21 " 9 AA,7
ivP, = g5+ @ - F) —5 Anh)] (AA.7)
2 0x ox
(di ) _ 1 SEL - 5 in h AA.8
1v£3 = n [——§+(PJ_ Pu)'_s(n l)] (AA.8)
3 3x 3x

1 2
We are essentially concerned with transformations from the variables (x, x )
to the variables (r, ). By differentiating the first two of equations (AA.4)

we obtain the transformations

9 2 cos3 e 0 N cosze sin 8 ) (AA.9)
1 Br 2 kG :
axl r(l + 3 cosze) Ty (1 +3 cosze)

9 sin” @ o 2 sin’@ cos @ 9 AA.10

2 - 2 or 2 08 (AA.10)
9% 1 + 3 cos © r(l + 3 cos” @)

Any function f(r,8) becomes a function of € only, or of r only, on a given

line of force. In this case we may write

) 3
9f i df 2 f
cos” © sin ® 3 cos @ daf (AA.11)

w1l = 2. dée T
ox! rz(l + 3 cos @) 6 ¥ 14+3 c052 o dr
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The derivatives of metric coefficients occurring in (AA.6) and (AA.7) are

given by

00539(9 + 15 cosze)

0

2 2
ox r (1 + 3 cos 9)2

ch
1 1 3 sin 6 (1 + cos2 8)

hl h2 3x2 r(l + 3 cos29)3/2

»

(AA.12)

(AA.13)
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